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Motivation
 Numerical and experimental solutions rely heavily on a linear 

assumption
 When nonlinearities are prominent, linear solutions prove to 

be inadequate



Motivation

 A gap exists between academics and industrial communities
 Siemens Industry Software’s demo aluminum aircraft, 

equipped with nonlinear pylon subassemblies
 From previous studies (Cooper et al., 2020), a more in-depth 

analysis on the pylon behavior was desired



Pylon

 Potential sources of nonlinearity
1. Geometric nonlinearity of thin beam
2. Variable stiffness, damping from 

contact
3. Friction in the bolted connection 
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Linear FEA Model 
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Low-level (Linear) Modal Testing and Analysis

 Combination of hammer and pseudo-random shaker testing used to 
identify linear natural frequencies, damping, and mode shapes

Mode 1 2 3 4 5

𝒇𝒇𝒆𝒆𝒆𝒆𝒆𝒆 (Hz) 7.25 45.79 78.07 96.30 134.75

𝒇𝒇𝑭𝑭𝑭𝑭𝑭𝑭 (Hz) 7.22 47.28 80.48 99.89 134.73

% difference 0.41 3.20 3.04 3.66 0.015

𝜻𝜻𝒆𝒆𝒆𝒆𝒆𝒆 (%) 0.12 1.76 0.39 0.95 0.35
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Nonlinear Testing Overview
 Two methods
 Stepped sine tests at different force levels (CONCERTO)
 “Flick tests” free decay (Hilbert, Zero Crossing)

 Goal
 Identify frequency and damping vs. amplitude backbone curves

 Signal processing
 Numerical integration of acceleration flick test time histories to 

get velocity and displacement
 Bandpass filtering at 3 and 12 Hz cutoffs to isolate first mode 

response
 Cables had noticeable impact on level of damping in system
 Tests were conducted with different numbers of cables 

attached to pylon to study this effect
9



Stepped-Sine Sweeps






 COde for Nonlinear identifiCation from mEasured Response to vibratiOn
A. Carrella, D.J. Ewins (2010)

1. Determine two frequencies on either side
of the resonance with equal amplitude 

2. 𝐻𝐻 = 𝑋𝑋(𝜔𝜔)
𝐹𝐹(𝜔𝜔)

= 𝐴𝐴𝑟𝑟+𝑗𝑗𝐵𝐵𝑟𝑟
𝜔𝜔𝑛𝑛
2+𝜔𝜔1

2+𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑛𝑛
2 = 𝑅𝑅1 + 𝑗𝑗𝐼𝐼1

𝐻𝐻 = 𝑋𝑋(𝜔𝜔)
𝐹𝐹(𝜔𝜔)

= 𝐴𝐴𝑟𝑟+𝑗𝑗𝐵𝐵𝑟𝑟
𝜔𝜔𝑛𝑛
2+𝜔𝜔2

2+𝑗𝑗𝜂𝜂𝑟𝑟𝜔𝜔𝑛𝑛
2 = 𝑅𝑅2 + 𝑗𝑗𝐼𝐼2

3. 𝜔𝜔𝑛𝑛 𝑋𝑋 = 𝑅𝑅2−𝑅𝑅1 𝑅𝑅2𝜔𝜔2
2−𝑅𝑅1𝜔𝜔1

2 +(𝐼𝐼2−𝐼𝐼1)(𝐼𝐼2𝜔𝜔2
2−𝐼𝐼1𝜔𝜔1

2)
𝑅𝑅2−𝑅𝑅1 2+ 𝐼𝐼2−𝐼𝐼1 2

4. 𝜁𝜁 𝑋𝑋 = (𝐼𝐼2−𝐼𝐼1)( 𝑅𝑅2𝜔𝜔2
2−𝑅𝑅1𝜔𝜔1

2 + 𝑅𝑅2−𝑅𝑅1 (𝐼𝐼2𝜔𝜔2
2−𝐼𝐼1𝜔𝜔1

2)
2𝜔𝜔𝑛𝑛

2 [ 𝑅𝑅2−𝑅𝑅1 2+ 𝐼𝐼2−𝐼𝐼1 2]

CONCERTO Method

ω1 ω2



CONCERTO Method: Limitations

ω1 ω2’ω2

Experimental
Expected

𝜔𝜔𝑛𝑛 𝑋𝑋 =
𝑅𝑅2 − 𝑅𝑅1 𝑅𝑅2𝜔𝜔22 − 𝑅𝑅1𝜔𝜔12 + (𝐼𝐼2 − 𝐼𝐼1)(𝐼𝐼2𝜔𝜔22 − 𝐼𝐼1𝜔𝜔12)

𝑅𝑅2 − 𝑅𝑅1 2 + 𝐼𝐼2 − 𝐼𝐼1 2

𝜁𝜁 𝑋𝑋 =
(𝐼𝐼2 − 𝐼𝐼1)( 𝑅𝑅2𝜔𝜔2

2 − 𝑅𝑅1𝜔𝜔12 + 𝑅𝑅2 − 𝑅𝑅1 (𝐼𝐼2𝜔𝜔22 − 𝐼𝐼1𝜔𝜔12)
2𝜔𝜔𝑛𝑛2[ 𝑅𝑅2 − 𝑅𝑅1 2 + 𝐼𝐼2 − 𝐼𝐼1 2]



Two Stable Solutions
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Hilbert Transform Approach
 H. Sumali, R. Kellog (2011)
1. Compute the Hilbert Transform on raw signal 𝑣𝑣 𝑡𝑡

 Hilbert Transform: �𝑣𝑣(𝑡𝑡)
 Analytical Signal: 𝑉𝑉 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 + 𝑗𝑗 �𝑣𝑣(𝑡𝑡)

2. The envelope of the ringdown is the magnitude
of the analytical signal 𝑉𝑉(𝑡𝑡)

 Curve fit an 𝑛𝑛𝑡𝑡𝑡 order polynomial to the envelope

 𝑉𝑉(𝑡𝑡) = 𝐴𝐴0𝑒𝑒−𝐶𝐶 𝑡𝑡 ∗ 𝑡𝑡, 𝐶𝐶 𝑡𝑡 = 𝜁𝜁 𝑡𝑡 𝜔𝜔𝑛𝑛(𝑡𝑡)

3. The damped oscillation frequency is the derivative 
of the analytical signal’s phase 𝜙𝜙 𝑡𝑡 = tan−1(�𝑣𝑣 𝑡𝑡

𝑣𝑣 𝑡𝑡
)

 𝜔𝜔𝑑𝑑 𝑡𝑡 = 𝑑𝑑𝜙𝜙(𝑡𝑡)
𝑑𝑑𝑑𝑑

a) Curve fit an 𝑚𝑚𝑡𝑡𝑡 order polynomial to the derivative 
b) Moving average filter on Hilbert phase derivative 

4. Compute natural frequency and zeta values

 𝜔𝜔𝑛𝑛 𝑡𝑡 = 𝜔𝜔𝑑𝑑 𝑡𝑡 2 + 𝐶𝐶 𝑡𝑡 2

 𝜁𝜁 𝑡𝑡 = −𝐶𝐶(𝑡𝑡)/𝜔𝜔𝑛𝑛(𝑡𝑡)
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Zero Crossing Approach
 Londoño et al. (2015)

1. Determine zero crossing times for 𝑥𝑥(𝑡𝑡): 𝒕𝒕𝟎𝟎

2. Estimate instantaneous frequency for each 𝑡𝑡𝑖𝑖0:            
𝑓𝑓 𝑡𝑡𝑖𝑖0 = 𝑡𝑡𝑖𝑖+10 − 𝑡𝑡𝑖𝑖−10 −1

3. Apply moving average filter to smooth �𝒇𝒇: 
𝑓𝑓 𝑡𝑡𝑖𝑖0 = 1

𝑁𝑁
∑𝑗𝑗=0𝑁𝑁−1 𝑓𝑓 𝑡𝑡𝑖𝑖+𝑗𝑗0

4. Determine max amplitude for each zero crossing time 
interval: �𝑎𝑎𝑖𝑖 = max

∀𝑡𝑡|(𝑡𝑡𝑖𝑖
0≥𝑡𝑡≥𝑡𝑡𝑖𝑖+1

0 )
𝑥𝑥 𝑡𝑡

5. Interpolate to get amplitude envelope at each 𝑡𝑡𝑖𝑖0: 𝐴𝐴𝑥𝑥(𝑡𝑡𝑖𝑖0)

6. Find instantaneous damping ratio for each 𝑡𝑡𝑖𝑖0:              
𝜁𝜁 𝑡𝑡𝑖𝑖0 = 1

𝜔𝜔0 𝑡𝑡𝑖𝑖
0 (𝑡𝑡𝑖𝑖+1

0 −𝑡𝑡𝑖𝑖−1
0 )

𝑙𝑙𝑙𝑙 𝐴𝐴𝑥𝑥 𝑡𝑡𝑖𝑖−1 − 𝑙𝑙𝑙𝑙 𝐴𝐴𝑥𝑥 𝑡𝑡𝑖𝑖+10

7. Apply moving average filter to smooth �𝜻𝜻: 𝜁𝜁 𝑡𝑡𝑖𝑖0

8. Plot 𝑓𝑓 𝑡𝑡𝑖𝑖0 vs. 𝐴𝐴𝑥𝑥(𝑡𝑡𝑖𝑖0) and 𝜁𝜁 𝑡𝑡𝑖𝑖0 vs. 𝐴𝐴𝑥𝑥(𝑡𝑡𝑖𝑖0)
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Comparison of Backbone Curves
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Effect of Accelerometer Cables

17
7 7.5 8 8.5

frequency (Hz)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

A
x

 (m
)

s1
s1, s2

s1, s2, s3
s1, s2, s4

all

0 2 4 6

damping ratio (%) 10 -3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

A
x

 (m
)

s2s4
s1s3

0 10 20 30 40 50 60 70 80 90 100

time (s)

-0.02

-0.01

0

0.01

0.02

x 
(m

)

s1

s1, s2

s1, s2, s3

s1, s2, s4

all



Nonlinear SDOF Model Identification (1 Cable)

𝒎𝒎𝒙̈𝒙 + 𝒄𝒄𝒏𝒏𝒏𝒏𝒙̇𝒙 + 𝒌𝒌𝒏𝒏𝒏𝒏𝒙𝒙 = 𝒇𝒇

𝑘𝑘𝑛𝑛𝑛𝑛 = 𝑘𝑘3 𝑥𝑥 3 + 𝑘𝑘2𝑥𝑥2 + 𝑘𝑘1 𝑥𝑥 + 𝑘𝑘0 + 𝑘𝑘𝑔𝑔𝑔𝑔𝑔𝑔 𝑥𝑥 − 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔

𝑘𝑘𝑔𝑔𝑔𝑔𝑔𝑔 = 0 if 𝑥𝑥 < 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔

𝑐𝑐𝑛𝑛𝑛𝑛 = 𝑐𝑐3 𝑥𝑥 1.5 + 𝑐𝑐2 𝑥𝑥 + 𝑐𝑐1 |𝑥𝑥| + 𝑐𝑐0

 Optimization performed using 
fminsearch MATLAB function to 
minimize difference in 
experimental and simulated 
backbones

𝑘𝑘𝑛𝑛𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜 = min
𝑘𝑘𝑛𝑛𝑛𝑛

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝑥𝑥 − 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑥𝑥

𝑐𝑐𝑛𝑛𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜 = min
𝑐𝑐𝑛𝑛𝑛𝑛

𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝑥𝑥 − 𝜁𝜁𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑥𝑥
18
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Conclusions

 Pylon is highly nonlinear!

 Pylon exhibits weak initial softening behavior and then strong 
hardening behavior originating from contact

 Zero-crossing approach (Londoño et al.) seems to be most 
accurate and easiest to implement

 Difficult to say where damping originates (structural, friction, 
air, etc.)

 Sensor cables significantly affect pylon damping
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Future Work

 Additional tests will be conducted to evaluate nonlinear SDOF 
model performance

 Exploring possible nonlinearities in other modes/coupling 
between modes and develop multi-DOF models

 Connecting linear airplane model with nonlinear SDOF model 
and studying combined system behavior

 Strongly recommend using lasers or DIC to get better 
damping estimates

20
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Nonlinear SDOF Model Performance
𝒎𝒎𝒙̈𝒙 + 𝒄𝒄𝟑𝟑 𝒙𝒙 𝟏𝟏.𝟓𝟓 + 𝒄𝒄𝟐𝟐 𝒙𝒙 + 𝒄𝒄𝟏𝟏 𝒙𝒙 + 𝒄𝒄𝟎𝟎 𝒙̇𝒙 + 𝒌𝒌𝟑𝟑 𝒙𝒙 𝟑𝟑 + 𝒌𝒌𝟐𝟐𝒙𝒙𝟐𝟐 + 𝒌𝒌𝟏𝟏 𝒙𝒙 + 𝒌𝒌𝟎𝟎 + 𝒌𝒌𝒈𝒈𝒈𝒈𝒈𝒈 𝒙𝒙 − 𝒙𝒙𝒈𝒈𝒈𝒈𝒈𝒈 𝒙𝒙 = 𝒇𝒇

Free Decay:

Low-level (~4 N peak) hammer input:
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Nonlinear SDOF Model Performance (high level)

~50 N peak hammer input
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