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4 I Background and Motivation

*Despite its effect on multiple aspects of structural dynamics, nonlinearity 1s under-considered and often
neglected in industrial design and qualification

*To develop understanding of nonlinear structural dynamics, Seimens Industry Software attempted system
identification on a demo aluminum aircraft (Fig, 1) [1]

*But, dynamics of the full system (wing+pylon+fixture)
were too complex

Solution: Begin with isolated
fixture-pylon structure

Fig. 1: Siemens demo aluminum aircraft [1]



5 ‘ Previous NOMAD Work

*A NOMAD 2019 research group studied the

tsolated fixture-pvylon structure [2 . Triaxial
Py [ ] Shaker Load Cell  Pylon Fixture Accelerometers

*Experiments were conducted on the setup
shown 1n Fig. 2

* Shaker was used to excite fixture-pylon structure

* Data collected through accelerometers

Results:

Experimental data

Uniaxial
DAQ, Amplifier Breadboard Accelerometers

Basic nonlinear model Connection to Optical Pylon

Fig. 2: Sandia isolated fixture-pylon test setup



e 1 Current Work

The NOMAD 2020 project builds upon the previous results by:

* Analyzing experimental data

*Further developing the nonlinear model of the fixture-pylon assembly
*Calibrating fixture-pylon model against experimental data

*Combining fixture-pylon model with linear model of the wing structure
*Analyzing the fixture-pylon and wing-pylon-tfixture models

*Simulating experiments by coupling wing-pylon model to a shaker model

First step: Analyzing fixture-pylon experimental data
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Experimental Data Analysis

Previous experiments resulted in sine spectra data from accelerometers

s1Y+ Magnitude Response Spectra

Frequency (Hz)

Fig. 3: Sine spectra magnitude response
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Fig. 4: Sine spectra phase response




Experimental Data Analysis (cont.)

From test data, we extracted backbone curves

s1Y+ Backbone and Magnitude Response Spectra

40

°*Backbone curves are a useful tool for
understanding nonlinear behavior

*Backbone aligned with peaks of magnitude
response

Magnitude

Backbone curves

, Backbone

Starting point

L v |

Frequency (Hz)

Fig. 5: s1Y+ backbone curve and magnitude response from sine
spectra experimental data



Il.  Fixture-Pylon Assembly




10 | Fixture-Pylon ROM

*To compare the experimental data to a numerical model, a

linear finite element model was created for the fixture-pylon
assembly using CUBIT

*To reduce the degrees of freedom (DOFs) in the model, a
Craig-Bampton (CB) reduction was run in Sierra SD to

obtain a reduced order model (ROM) [3-4]

° This takes the full model with thousands of DOFs and reduces
it to a more manageable model with only 7 retained DOFs

Virtual Nodes

Drive Point

(virtual nodes, accelerometers, and drive point)

Accelerometer

Reduce the full model to something more manageable:

Full model = CB reduction = Linear ROM

Fig. 6: Fixture-pylon CAD assembly



11 I Fixture-Pylon ROM (cont.)

*The linear ROM from Sierra

provides the mass and stiffness Add i | t
matrices for the fixture-pylon nonlinear elemen

* Damping matrix is computed
using proportional damping

@)KING DOWN / \ \
*To convert the linear ROM to a | .

: : 1-D Nonli - . ]
nonlinear model, virtual nodes 1D Nonlinear| /1 \(£:0 Nonlinear /:
\ | |
\ | i \ [

' \

were tied to the pylon block so
that a nonlinear restoring force

and =
: @ —— ThinBeam oo Right Block
could be added to the equations . i Lk
of motion (EOMs) | : A
. Virtual node : I “ Virtual node
I
: : Rigid Bar Multi- i Rigid Bar Multi-
*EOMs of nonlinear dynamic \ 4 rm—— in Pkl /
system:
Fig. 7: Virtual nodes in pylon block
Mx(t) + Cx(t) + Kx(t) + =u
M) + Cx® + Kx(0) + )
Lmear ROM Nonlinear restoring force
(Sterra Output) between virtual nodes

(MATLAB)




12 I Nonlinear Normal Mode (NNM) Theory

*For an unforced, undamped system, an NNM 1s defined as a response that is periodic but not

necessarily synchronous [5-6]

*A multi-degree of freedom system will have multiple NNMs

*NNMs are often illustrated in a frequency - energy plot
(FEP) (Fig. 8), which shows how a system’s natural frequency
changes with energy input into the system

*Each point along the NNM in the FEP corresponds to a

different time-history response 0

Energy

*Multi-harmonic balance (MHB) 1s one of several numerical
methods used to compute NNMs

NNMs are computed using MHB and 10

illustrated in frequency - energy plots

Natural frequency changes

with input energy

I

Internal
resonance

Frequency, 1/s

0.16 0.18 0.2 0.22

Fig. 8: Frequency - energy curve for 15t NNM of sample system




13 | Calibrating ROM Nonlinearity

Two options were considered for nonlinear elements:

*Cubic spring element (Fig, 9)
* fu(Ax) = ky,(Ax)*
* Parameters:

o kyy- nonlinear spring constant

*Gap-spring element (Fig. 10)
0 for Ax < xyqp
" fu(8%) = Kpen(Ax — x4q,) for Ax > x
pen gap gap
* Parameters:

° kpen- linear penalty spring constant

° Xgap- gap width

Restoring Force (f

nl)

Restoring Force (f

1 1
0 0.2 0.4 0.6 0.8

Displacement

Fig. 9: f,u for cubic spring element

. . L L
0 0.2 0.4 0.6 0.8

Displacement

Fig. 10: f,,; for gap-spring element



14 | Calibrating ROM Nonlinearity (cont.)

With cubic spring (Fig. 11) and gap-spring (Fig. 12) elements, NNM backbone curves were determined and

compared to experimental data

Amplitude (m)

T T T T T

s1Y Exp. Backbone
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Fig. 11: Cubic spring element backbone comparison
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Fig. 12: Gap-spring element backbone comparison

Selected: Kpen =7 *10"4 N/m

Gap-spring element Xgap = 0.68 mm




15 ‘ Stepped Sine Validation

A stepped sine test simulation was performed to verify that the gap-spring nonlinearity accurately captures
the nonlinear dynamics in the pylon-fixture ROM in comparison to the NOMAD 2019 experimental results

Input Forcing

Location \

A stepped sine test simulation will verify if the
calibrated ROM is in agreement with the

experimental data

Output Displacement
Location

Fig. 13: Fixture-pylon system with marked
input and output nodes



16 ‘ Stepped Sine Validation (cont.)

Despite some variation 1n stiffness effects, the simulation results compared relatively well with the
experimental results

Nearly all linear-peak regions occurred at a slightly higher frequency and most nonlinear-peaks were
slightly smaller in magnitude, compared to the experimental results
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Fig. 14: Comparison of results from NOMAD 2019
experiment (a) and stepped sine simulation (b)
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17 ‘ Stepped Sine Validation (cont.)

Amplitude (m)

Despite some variation 1n stiffness effects, the simulation results compared relatively well with the
experimental results

Nearly all linear-peak regions occurred at a slightly higher frequency and most nonlinear-peaks were
slightly smaller in magnitude, compared to the experimental results
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There was great agreement between the simulation and experimental
results which suggests that the calibrated ROM was accurate
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Fig. 14: Comparison of results from NOMAD 2019
experiment (a) and stepped sine simulation (b)






19 1 Wing-Pylon ROM

*Next step: Attach the calibrated pylon to the wing

*Following similar methods as the fixture-pylon model, a linear
finite element model of the next-level wing-pylon assembly was
created

*Craig-Bampton reduction was applied using Sierra SD to obtain
the linear ROM

> DOFs for the accelerometers, virtual nodes, and drive points were
retained

Drive Points |

Virtual Nodes

Fig. 15: Wing-pylon CAD assembly

*The calibrated gap-spring element in the pylon block was added
to the linear ROM to desctibe the nonlinear EOMs Accelerometer

Calibrated gap-
spring element in Nonlinear EOMs

Linear wing-pylon
ROM from Sierra

pylon

{ J

| |

Mx(t) + Cx(t) + Kx(t) faix(®)} Mx(t) + Cx(t) + Kx(t) + fu{x(t)} =u I



20 ‘ Wing-Pylon ROM (cont.)

Mode shapes for linear wing-pylon model:
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Fig. 16: Mode 1 (7.30 Hz) Fig. 17: Mode 2 (22.20 Hz)
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Fig. 18: Mode 3 (47.28 Hz) Fig. 19: Mode 4 (49.22 Hz)

Note: mode numbers refer to elastic modes



21 | Multi-Harmonic Balance Method

*  The MHB method was utilized to identifty NNMs and any possible internal resonances for the
calibrated wing-pylon ROM

*  Mode 2 was of interest because the bending of the wing resulted in bending of the pylon beam
which produced large displacements in the lower pylon block

* Large displacements in the pylon initiated the nonlinear behavior in the gap-spring element

Mode 2 was considered for further investigation

based on the large wing and pylon bending mode
shapes

DispVEC
2.639e+00
1.979e+00
1.320e+00
6.604e-01
9.301e-04

Fig. 20: Mode 2 (22.20 Hz)



2 I Multi-Harmonic Balance Method (cont.)

*  NNM 2 contained a small frequency shift which remained extremely close to linear mode 2 resonant

frequency

* This can easily be overlooked if only a linear analysis 1s considered thus reinforcing the significance of

nonlinear analyses

* An internal resonance was identified on a tongue of NNM 2

NNM 2 Frequency-Energy

NNM 2 Frequency-Energy
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Fig. 21: NNM 2 of the Wing-Pylon Assembly
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Fig. 22: NNM 2 with Identified Internal Resonance

and Single Harmonic Points



23 I Multi-Harmonic Balance Method (cont.)

NNM 2 Frequency-Energy

* A 1:5 internal resonance was identified )
between NNM 2 and 7 on the wing-pylon
ROM,; the red point in (a) 1s the tongue
of the internal resonance between the

two NNM's
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* The internal resonance can easily be seen
in the displacement time-history (b)
where multiple ratios of 1:5 harmonics
exist 0
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* Single harmonic motion exists (c) in
NNM 2 as well which 1s described by the
magenta point in (a)

displacement
displacement

NNM 2 remained very close to its linear
mode and additionally contained
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Fig. 23: Displacement Time-Hitories of Identified Internal Resonance and Single Harmonic Motion



24 I Multi-Harmonic Balance Method (cont.)

* The modal interaction between the NNM's 2 and 7 are depicted in plot (b) where NNM 7 was scaled
down by an integer of 5 and only computed to the 5th harmonic (there are more harmonics and internal
resonances on NNM 7)

* This essentially means when mode 2 1s excited mode 7 can experience large displacement amplitude

responses
(a) (b) , ()
NNM 2 and 7 Modal Interaction
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Fig. 24: Linear Modes 2 and 7 Mode Shapes Fig. 25: NNM 2 and 7 Modal Interaction Fig. 26 NNM 2 and 7 Internal Resonance Crossing



25 I Multi-Harmonic Balance Method (cont.)

* The modal interaction between the NNM's 2 and 7 are depicted in plot (b) where NNM 7 was scaled
down by an integer of 5 and only computed to the 5th harmonic (there are more harmonics and internal
resonances on NNM 7)

* This essentially means when mode 2 is excited mode 7 can experience large displacement amplitude
responses

(@ (b) (©)

NNM 2 and 7 Modal Interaction
23 T T

NNM 2
15 NNM 7

NNM 2
1/5 NNM 7

If NNM 2 is excited during a simulation or experiment, higher
harmonics can be found in some components of the model due to
the internal resonance, which is critical information to consider
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Fig. 24: Linear Modes 2 and 7 Mode Shapes Fig. 25: NNM 2 and 7 Modal Interaction Fig. 26 NNM 2 and 7 Internal Resonance Crossing



Virtual Experiments




27 | Shaker Model

To account for physical limitations of the shaker, a previously calibrated electro-mechanical shaker model
was substructured to the wing-pylon ROM for simulated experiments using the force appropriation method

(@)

Camp

I:am*p

ep = BL(x3 — x1)

Note: Shaker input voltage is the only input to the substructured shaker, wing, pylon system

Load cell

Fig. 27: Virtual shaker model (a) and
wing-pylon finite element model (b)




28 | Force Appropriation Method

*Phase lag quadrature criterion: A single NNM is isolated if the structure vibrates with a phase lag of
90° with respect to the input signal

*Force appropriation testing relies on the phase lag quadrature criterion
° The structure is excited at different forcing frequencies until a 90° phase difference is achieved

> NNMs can be identified one at a time using this method

*Simulated force appropriation experiments were performed for the wing-pylon assembly
* A controller varied the frequency of the shaker input voltage until quadrature was achieved

* The amplitude of the input voltage was then increased and the process repeated; thus constructing the
frequency-energy plot (FEP) for NNMs of interest

Fig. 28: Block diagram of force appropriation testing
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Force Appropriation Method (cont.)
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31 ¥ Results, Conclusions and Future Work

Results

* NNMs were successfully characterized using computational methods such as force appropriation and multi-harmonic
balance

* Models were accurately validated against experimental data and finite element software

* It was shown that the study of NNMs can yield insights into nonlinear systems, such as the presence and behavior of
internal resonances as well as the frequency-energy dependence of nonlinear modes

* 'To simulate a physical experiment, a calibrated shaker model was substructured to the wing-pylon model

Future Work:

* Fine-tune simulation model to accurately simulate second and higher modes

* Experimental testing of the physical wing-pylon assembly to validate NNMs and internal resonances between
different combinations of modes

* Further investigations can be conducted on the effect of other system parameters such as wing length
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